Mathematics 125 – SUMMER 2010
CALCULUS II
CRN # 30175 – MTWRF 9:00–9:50 AM – Room BH 227

Instructor: Dr. Arpad Benyi
Office: BH 218 – TE : 650–3710
E–mail: arpad.benyi@wwu.edu
URL: http://www.ac.wwu.edu/~benyia
Office Hours: MTWR 10:00–10:50 AM
and by appointment.

by Hughes-Hallett, et al. (Required)

Calculator: TI-89 or TI-86 (Recommended)

Prerequisites: Math 124

Suggested Homework Problems

A list of suggested homework problems is posted at
http://www.ac.wwu.edu/~benyia/teachingsummer2010.html

Homework is a major part of the learning process in Mathematics. It is essential that you work on the problems on a regular basis. You are encouraged to work and discuss the problems in groups. Not practicing the posted problems will very likely affect your overall class performance. Furthermore, in order to successfully complete this course, it is important that you put in the effort to actually do and understand each problem on your own. Remember that learning is your responsibility!

There will be no homework collected!

Classes

You are expected to bring your textbook every class. You should read the book and attempt to solve some of the problems in preparation for each class. There is no penalty for missing lectures. However, you are responsible for the material discussed in class as well as any additional assignments and announcements concerning the course made in class. Make sure you keep up with the pace of the course and do not get behind in the material presented. Again, learning is your responsibility!

Cell phones, beepers, etc. must be turned off during class time!
Topics and Expectations

Math 125 is an introduction to integral calculus and a natural continuation of Math 124. Therefore, a good understanding of the notions covered in differential calculus is necessary in order to follow the concepts taught in Math 125, and crucial to your success in this class.

Upon completion of the course you are expected to

• have a good understanding of key notions such as indefinite integral, definite integral, parametric equation, polar coordinates, or differential equation

• achieve a deep understanding of the meaning of each of the symbols and concepts learned, such as the various interpretations of the definite integral

• know the relationships between various concepts introduced, such as the fundamental theorem of calculus

• be able to apply your knowledge in practical applications, for example, computing areas, distances, and volumes

• reach a good level in symbolic manipulation and in the computation of integrals of functions that involve polynomials, exponentials, logarithms or trigonometric functions without using a calculator

Exams

There will be 4 in-class exams on the following Fridays: July 9, July 23, August 6, and August 20. The problems in the exams emphasize the understanding of concepts related to the material. Solutions to exam questions will be posted outside my office after each examination.

Grading

Your total score in the course (S) will be determined by the performance in the 4 in-class exams. Each exam ($E_1 - E_4$) will be graded on a scale from 0 to 10. Your final score (S) will be computed by the average of the four exam scores:

$$S = \frac{E_1 + E_2 + E_3 + E_4}{4}.$$

Your final score will be based on the sum of all percentages. Letter grades will be assigned according to the following percentage scale: $100 \geq A \geq 90$, $90 > A- \geq 87$, $87 > B+ \geq 84$, etc.

Course policies

Calculators are allowed for all the exams. If some health or family emergency would prevent you from missing an exam, you should contact me immediately before the exam and I will make alternate arrangements. Once you take an exam, the score is recorded and cannot be adjusted or replaced under any circumstances.

Incomplete Grades/Academic Dishonesty

University guidelines as found in the Bulletin will be followed.