2.14.13. The Heine-Borel property

Any closed interval of \(\mathbb{R} \) has the Heine Borel property.

Proof. Let \(\mathcal{G} \) be an open cover of \([a, b], a < b\), i.e., \([a, b] \subset \bigcup \{G : G \in \mathcal{G}\}\) and each \(G \in \mathcal{G} \) is open. We want to show that there is a finite subfamily of \(\mathcal{G} \) that is also an open cover of \([a, b]\).

Step 1. If \(x \in [a, b) \), then there exists \(G \in \mathcal{G} \) and \(y \in [a, b), y > x \), such that \([x, y] \subset G\).

Indeed, since \([a, b] \subset \bigcup \{G : G \in \mathcal{G}\}\), and \(x \in [a, b) \), there exists \(G \in \mathcal{G} \) such that \(x \in G \). But \(x \neq b \) and \(G \) is open, thus giving us \([x, c) \subset G\) for some \(c \in [a, b) \). Pick any \(y \in (x, c) \) to obtain \([x, y] \subset G\).

Step 2. Let \(C = \{y \in (a, b) : \exists n \in \mathbb{N}, \exists G_1, ..., G_n, [a, y] \subset \bigcup_{j=1}^{n} G_j\} \).

By Step 1 applied to \(x = a \), we find \(y \in (a, b) \) and \(G \in \mathcal{G} \) such that \([x, y] \subset G\). Since \(C \) is bounded above, \(\sup C \) exists. Let \(c = \sup C \). Clearly, \(a < c \leq b \).

Step 3. \(c \in C \).

To show \(c \in C \) is equivalent to proving that \([a, c]\) can be covered by finitely many open sets in \(\mathcal{G} \). Since \(c \in (a, b] \), there exists \(G \in \mathcal{G} \) such that \(c \in G \). But \(G \) is open, so there exists \(d \in [a, b) \) such that \((d, c] \subset G\). If \(c \notin C \), then there must exist some \(z \in C \cap (d, c) \); otherwise, \(d \) would be a smaller upper bound of \(C \) than \(c \), which is impossible. But \(z \in C \) implies that there exist \(G_1, ..., G_n \in \mathcal{G} \) such that \([a, z] \subset \bigcup_{j=1}^{n} G_j \).

Moreover, \([z, c] \subset (d, c] \subset G\), so \([a, c] = [a, z] \cup [z, c] \subset \bigcup_{j=1}^{n+1} G_j \), where we let \(G_{n+1} = G \).

Step 4. \(c = b \).

Assume that \(c < b \). By Step 1, there exists \(y \in [a, b], y > c \), such that \([c, y] \subset G \) for some \(G \in \mathcal{G} \). But by Step 3, \(c \in C \), that is \([a, c] \) can be covered by a finite subfamily of \(\mathcal{G} \). This implies that \([a, y] = [a, c] \cup [c, y] \) can be also covered by a finite subfamily of open sets, so \(y \in C \). This however contradicts the fact that \(y > c = \sup C \).

Recalling again the definition of our set \(C \) from Step 2, we see that we proved that \([a, b] \) can be covered by a finite subfamily of \(\mathcal{G} \). The proof is complete.

\(\square \)