ON A CLASS OF BILINEAR PSEUDODIFFERENTIAL OPERATORS

ÁRPÁD BÉNYI AND TADAHIRO OH

Abstract. We provide a direct proof for the boundedness of pseudodifferential operators with symbols in the bilinear Hörmander class $BS^0_{1,0}$, $0 \leq \delta < 1$. The proof uses a reduction to bilinear elementary symbols and Littlewood-Paley theory.

1. Introduction: main results and examples

Coifman and Meyer’s ideas on multilinear operators and their applications in partial differential equations (PDEs) have had a great impact in the future developments and growth witnessed in the topic of multilinear singular integrals. One of their classical results [9, Proposition 2, p. 154] is about the $L^p \times L^q \rightarrow L^r$ boundedness of a class of translation invariant bilinear operators (bilinear multiplier operators) given by

$$T_\sigma(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(\xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{ix \cdot (\xi + \eta)} d\xi d\eta.$$

We have the following.

Theorem A. If $|\partial_\xi^\beta \partial_\eta^\gamma \sigma(\xi, \eta)| \lesssim (1 + |\xi| + |\eta|)^{-|\beta|-|\gamma|}$ for all $\xi, \eta \in \mathbb{R}^n$ and all multi-indices β, γ, then T_σ has a bounded extension from $L^p \times L^q$ into L^r, for all $1 < p, q < \infty$ such that $1/p + 1/q = 1/r$.

In fact, Coifman and Meyer’s approach yields Theorem A only for $r > 1$. The optimal extension of their result to the range $r > 1/2$ (as implied in the theorem above) can be obtained using interpolation arguments and an end-point estimate $L^1 \times L^1$ into $L^{1/2, \infty}$ in the works of Grafakos and Torres [10] and Kenig and Stein [14].

Bilinear pseudodifferential operators are natural non-translation invariant generalizations of the translation invariant ones; they allow symbols to depend on the space variable x as well. Let us then consider bilinear operators a priori defined from $\mathcal{S} \times \mathcal{S}$ into \mathcal{S}' of the form

$$T_\sigma(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \sigma(x, \xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{ix \cdot (\xi + \eta)} d\xi d\eta.$$

Perhaps unsurprisingly, we impose then similar conditions on the derivatives of the symbol σ with the expectation that they would yield indeed bounded operators T_σ.

Date: December 4, 2012.

1991 Mathematics Subject Classification. Primary 35S05, 47G30; Secondary 42B15, 42B20.

Key words and phrases. Bilinear pseudodifferential operators, bilinear Hörmander classes, symbolic calculus, bilinear elementary symbols, Littlewood-Paley theory, Calderón-Zygmund theory.
on appropriate spaces of functions. The estimates that we have in mind define the so-called bilinear Hörmander classes of symbols, denoted by $\mathcal{B}S^m_{\rho,\delta}$. We say that $\sigma \in \mathcal{B}S^m_{\rho,\delta}$ if

$$
|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1 + |\xi| + |\eta|)^{m+\delta|\alpha| - \rho(|\beta| + |\gamma|)}
$$

for all $x, \xi, \eta \in \mathbb{R}^n$ and all multi-indices α, β, γ. Note that we need smoothness in x as in the linear Hörmander classes. As usual, the notation $a \lesssim b$ means that there exists a positive constant K (independent of a, b) such that $a \leq Kb$.

With this terminology, we can re-state Theorem A as follows:

If the x-independent symbol $\sigma(\xi,\eta)$ belongs to the class $\mathcal{B}S^0_{1,0}$, then T_σ is bounded from $L^p \times L^q$ into L^r for all $1 < p, q < \infty$ such that $1/p + 1/q = 1/r$.

The condition of translation invariance (equivalently, the x-independence of the symbol) is superfluous. Moreover, the previous boundedness result can be shown to hold for the larger class of symbols $\mathcal{B}S^0_{1,\delta} \supseteq \mathcal{B}S^0_{1,0}$, where $0 \leq \delta < 1$. This is a known fact that is tightly connected to the bilinear Calderón-Zygmund theory developed by Grafakos and Torres in [10] and the existence of a transposition symbolic calculus proved by Bényi, Maldonado, Naibo and Torres [3]. Let us briefly give an outline of how this follows. First, we note that the bilinear kernels associated to bilinear operators with symbols in $\mathcal{B}S^0_{1,\delta}$, $0 \leq \delta < 1$, are bilinear Calderón-Zygmund operators in the sense of [10]. Second, we recall that [10, Corollary 1], which is an application of the bilinear $T(1)$ theorem therein, states the following.

Theorem B. If T and its transposes, T^{*1} and T^{*2}, have symbols in $\mathcal{B}S^0_{1,1}$, then they can be extended as bounded operators from $L^p \times L^q$ into L^r for all $1 < p, q < \infty$ and $1/p + 1/q = 1/r$.

Third, by [3, Theorem 2.1], we have:

Theorem C. Assume that $0 \leq \delta \leq \rho \leq 1$, $\delta < 1$, and $\sigma \in \mathcal{B}S^m_{\rho,\delta}$. Then, for $j = 1, 2$, $T_{\sigma^*}^{*j} = T_{\sigma^{*j}}$, where $\sigma^{*j} \in \mathcal{B}S^m_{\rho,\delta}$.

Finally, since $\mathcal{B}S^0_{1,\delta} \subset \mathcal{B}S^0_{1,1}$, we can directly combine Theorems B and C to recover the following optimal extension of the Coifman-Meyer result; note that now the symbol is allowed to depend on x while r is still allowed to be in the optimal interval $(1/2, \infty)$.

Theorem 1. If σ is a symbol in $\mathcal{B}S^0_{1,\delta}$, $0 \leq \delta < 1$, then T_σ has a bounded extension from $L^p \times L^q$ into L^r for all $1 < p, q < \infty$ such that $1/p + 1/q = 1/r$.

Once we have the boundedness of the class $\mathcal{B}S^0_{1,\delta}$ on products of Lebesgue spaces, a “reduction method” allows us to deduce also the boundedness of the class $\mathcal{B}S^m_{1,\delta}$ on appropriate products of Sobolev spaces. Moreover, our estimates in this case come in the form of Leibniz-type rules; for more on this kind of properties, see the work of
Bernicot, Maldonado, Moen and Naibo [7]. In the particular case when the bilinear operator is just a differential operator, the Leibniz-type rules are referred to as Kato-Ponce’s commutator estimates and are known to play a significant role in the study of the Euler and Navier-Stokes equations, see [12]; see also Kenig, Ponce and Vega [13] for further applications of commutators to nonlinear Schrödinger equations. Let \(J^m = (I - \Delta)^{m/2} \) denote the linear Fourier multiplier operator with symbol \(\langle \xi \rangle^m \), where \(\langle \xi \rangle = (1 + |\xi|^2)^{1/2} \). By definition, we say that \(f \) belongs to the Sobolev space \(L^p_m \) if \(J^m f \in L^p \).

We have the following.

Theorem 2. Let \(\sigma \) be a symbol in \(BS^m_{1,\delta} \), \(0 \leq \delta < 1, m \geq 0 \) and let \(T_\sigma \) be its associated operator. Then there exist symbols \(\sigma_1 \) and \(\sigma_2 \) in \(BS^0_{1,\delta} \) such that, for all \(f, g \in S \),

\[
T_\sigma(f, g) = T_{\sigma_1}(J^m f, g) + T_{\sigma_2}(f, J^m g).
\]

In particular, we then have that \(T_\sigma \) has a bounded extension from \(L^p_m \times L^q_m \) into \(L^r \), provided that \(1/p + 1/q = 1/r, 1 < p, q < \infty \). Moreover,

\[
\|T_\sigma(f, g)\|_{L^r} \lesssim \|f\|_{L^p_m} \|g\|_{L^q_m} + \|f\|_{L^p} \|g\|_{L^q_m}.
\]

The proof of Theorem 2 follows a similar path as the one in the work of Bényi, Nahmod and Torres [4, Theorem 2.7]. For the convenience of the reader, we sketch here the main steps in the argument. Consider \(\phi \) be a \(C^\infty \)-function on \(\mathbb{R} \) such that \(0 \leq \phi \leq 1, \text{supp} \ \phi \subset [-2, 2] \), and \(\phi(r) + \phi(\frac{1}{r}) = 1 \) on \([0, \infty)\). Then equation (1.2) holds if we let

\[
\sigma_1(x, \xi, \eta) = \sigma(x, \xi, \eta) \phi\left(\frac{\langle \eta \rangle^2}{\langle \xi \rangle^2}\right) \langle \xi \rangle^{-m},
\]

\[
\sigma_2(x, \xi, \eta) = \sigma(x, \xi, \eta) \phi\left(\frac{\langle \xi \rangle^2}{\langle \eta \rangle^2}\right) \langle \eta \rangle^{-m}.
\]

Now, straightforward calculations that take into account the support condition on \(\phi \) give that \(\sigma_1 \) and \(\sigma_2 \) belong to \(BS^0_{1,\delta} \). The Leibniz-type estimate (1.3) follows now from Theorem 1 and (1.2).

It is also worthwhile to note that we can replace (1.3) with a more general Leibniz-type rule of the form

\[
\|T_\sigma(f, g)\|_{L^r} \lesssim \|f\|_{L^p_{m_1}} \|g\|_{L^{q_1}} + \|g\|_{L^p_{m_2}} \|f\|_{L^{q_2}},
\]

where \(1/p_1 + 1/q_1 = 1/p_2 + 1/q_2 = 1/r, 1 < p_1, p_2, q_1, q_2 < \infty \).

One of the main reasons for the study of the Hörmander classes of bilinear pseudodifferential operators is the fact that the conditions imposed on the symbols arise naturally in PDEs. In particular, the bilinear Hörmander classes \(BS^{m}_{p,\delta} \) model the product of two functions and their derivatives.

Example 1. Consider first a bilinear partial differential operator with variable coefficients

\[
D_{k,\ell}(f, g) = \sum_{|\beta| \leq k} \sum_{|\gamma| \leq \ell} c_{\beta\gamma}(x) \frac{\partial^\beta f}{\partial x^\beta} \frac{\partial^\gamma g}{\partial x^\gamma}.
\]
Note that $D = T_{\sigma_{k,\ell}}$, where the bilinear symbol is given by
\[
\sigma_{k,\ell}(x, \xi, \eta) = (2\pi)^{-2n} \sum_{\beta,\gamma} c_{\beta\gamma}(x) (i\xi)^{\beta} (i\eta)^{\gamma}.
\]
Assuming that the coefficients $c_{\beta\gamma}$ have bounded derivatives, it is easy to show that $\sigma_{k,\ell} \in BS^{k+\ell,0}_{1,0}$.

Example 2. The symbol in the previous example is almost equivalent to a multiplier of the form
\[
\sigma_m(\xi, \eta) = (1 + |\xi|^2 + |\eta|^2)^{m/2}.
\]
Indeed, this symbol belongs to $BS^m_{1,0}$. We can also think of this symbol as the bilinear counterpart of the multiplier $\langle \xi \rangle^m$ that defines the linear operator J^m.

Example 3. With the notation in Example 2, the multipliers $\xi \sigma^{-1}(\xi, \eta)$ and $\eta \sigma^{-1}(\xi, \eta)$ belong to $BS^0_{1,0}$. In general, the multipliers $\sigma_{k+\ell}(\xi, \eta) = \xi^{k} \eta^{\ell} \sigma^{-1}(\xi, \eta)$ belong to $BS^{k+\ell}_{0,0}$.

Example 4. One of the recurrent techniques in PDE estimates is to truncate a given multiplier at the right scale. Consider now
\[
\sigma(\xi, \eta) = \sigma_m(\xi, \eta) \sum_{a,b \in \mathbb{N}} c_{a,b}(x) \varphi(2^{-a}\xi) \chi(2^{-b}\eta),
\]
where φ and χ are smooth “cutoff” functions supported in the annulus $\{1/2 \leq |\xi| \leq 2\}$ and the coefficients satisfy derivative estimates of the form
\[
\|\partial^\alpha c_{a,b}(x)\|_{L^\infty} \lesssim 2^{k|\alpha| \max(a,b)}.
\]
Elementary calculations show that $\sigma \in BS^m_{1,\delta}$.

Remark 1. Theorems 1 and 2 lead to the natural question about the boundedness properties of other Hörmander classes of bilinear pseudodifferential operators. An interesting situation arises when we consider the bilinear Calderón-Vaillancourt class $BS^0_{0,0}$. A result of Bényi and Torres [5] shows that, in this case, the $L^p \times L^q \to L^r$ boundedness fails. For some additional conditions (besides being in $BS^0_{0,0}$) for a symbol that guarantee the corresponding bilinear pseudodifferential operator is $L^p \times L^q \to L^r$ bounded, see again [5] and the recent work of Bernicot and Shrivastava [8]. However, there is a nice substitute for the Lebesgue space estimates. If we consider instead modulation spaces $M^{p,q}$ (see the excellent book by Gröchenig [11] for their definition and basic properties), we can show, for example, that if $\sigma \in BS^0_{0,0}$ then $T_\sigma : L^2 \times L^2 \to M^{1,\infty}$ (which contains L^1). This and other more general boundedness results on modulation spaces for the class $BS^0_{0,0}$ were obtained by Bényi, Gröchenig, Heil and Okoudjou [2]. Then, this particular boundedness result with the reduction method employed in Theorem 2 allows us to also obtain the boundedness of the class $BS^m_{0,0}$ from $L^2_m \times L^2_m$ into $M^{1,\infty}$. Interestingly, we can also obtain the $L^p \times L^q \to L^r$ boundedness of the class $BS^m_{0,0}$, but we have to require in this case the order m to depend on the Lebesgue exponents; see the work of Bényi, Bernicot, Maldonado, Naibo and Torres [1], also Miyachi and Tomita [16] for the optimality of the order.
m and the extension of the result in [1] below r = 1. The most general case of the classes $BS^m_{p,\delta}$ is also given in [1].

In the remainder of the paper we will provide an alternate proof of Theorem 1 that does not use sophisticated tools such as the symbolic calculus. The proof is in the original spirit of the work of Coifman and Meyer that made use of the Littlewood-Paley theory. As such, we will only be concerned here with the boundedness into the target space L^r with $r > 1$. Of course, obtaining the full result for $r > 1/2$ is then possible because of the bilinear Calderón-Zygmund theory, which applies to our case. We will borrow some of the ideas from Bényi and Torres [6], which in turn go back to the nice exposition (in the linear case) by Journé [15], by making use of the so-called bilinear elementary symbols.

2. Proof of Theorem 1

We start with two lemmas that provide the anticipated decomposition of our symbol into bilinear elementary symbols. Since they are the immediate counterparts of [6, Lemma 1 and Lemma 2] to our class $BS^0_{1,\delta}$, we will skip their proofs; see also [15, pp. 72-75] and [9, pp. 55-57]. The first reduction is as follows.

Lemma 3. Fix a symbol σ in the class $BS^0_{1,\delta}$, $0 \leq \delta < 1$, and an arbitrary large positive integer N. Then, for any $f, g \in S$, $T_\sigma(f,g)$ can be written in the form

$$T_\sigma(f,g) = \sum_{k,\ell \in \mathbb{Z}^n} d_{k\ell} T_{\sigma_{k\ell}}(f,g) + R(f,g),$$

where $\{d_{k\ell}\}$ is an absolutely convergent sequence of numbers,

$$\sigma_{k\ell}(x,\xi,\eta) = \sum_{j=0}^{\infty} \kappa_{j k\ell}(x) \psi_{k\ell}(2^{-j}\xi,2^{-j}\eta),$$

with each $\psi_{k\ell}$ a C^∞-function supported on the set $\{1/3 \leq \max(|\xi|,|\eta|) \leq 1\}$,

$$|\partial_\beta \partial_\gamma \psi_{k\ell}(\xi,\eta)| \leq 1 \quad \text{for all } |\beta|,|\gamma| \leq N,$$

$$|\partial^\alpha \kappa_{j k\ell}(x)| \lesssim 2^{j|\alpha|} \quad \text{for all } |\alpha| \geq 0,$$

and R is a bounded operator from $L^p \times L^q$ into L^r, for $1/p + 1/q = 1/r$, $1 < p, q, r < \infty$.

Now, if $\sigma_{k\ell}$ is any of the symbols in (2.4) and we knew a priori that $T_{\sigma_{k\ell}}$ are bounded from $L^p \times L^q$ into L^r with operator norms depending only on the implicit constants from (2.5) and (2.6), the fact that the sequence $\{d_{k\ell}\}$ is absolutely convergent immediately implies the $L^p \times L^q \to L^r$ boundedness of T_σ. Our first step has thus reduced the study of generic symbols in the class $BS^0_{1,\delta}$ to symbols of the form

$$\sigma(x,\xi,\eta) = \sum_{j=0}^{\infty} m_j(x) \psi(2^{-j}\xi,2^{-j}\eta),$$

where $||\partial^\alpha m_j||_{L^\infty} \lesssim 2^{j|\alpha|}$ and ψ is supported in $\{1/3 \leq \max(|\xi|,|\eta|) \leq 1\}$.

Our second step is to further reduce the simpler looking symbol given in (2.7) to a sum of bilinear elementary symbols.
Let first that we can still use the Littlewood-Paley theory on the $4 T$
By (2.7) in an annulus. Nevertheless, we still claim the following.
H"older's inequality, we have
\begin{equation}
\sigma_k(x, \xi, \eta) = \sum_{j=0}^{\infty} m_j(x) \varphi_k(2^{-j} \xi) \chi_k(2^{-j} \eta), \quad k = 1, 2, 3,
\end{equation}
with $\text{supp} \varphi_1 \subseteq \{1/4 \leq |\xi| \leq 2\}$, $\text{supp} \chi_1 \subseteq \{|\eta| \leq 1/8\}$, $\varphi_3 = \chi_1$, $\chi_3 = \varphi_1$, $\text{supp} \varphi_2$, $\text{supp} \chi_2 \subseteq \{1/20 \leq |\xi| \leq 2\}$, and $\|\partial^p m_j\|_{L^\infty} \lesssim 2^{j|\alpha|}$.
Therefore, we are now only faced with the question of boundedness for the two operators T_{σ_1} and T_{σ_2}, with σ_1 and σ_2 defined in Lemma 4; boundedness of T_{σ_3} follows from that of T_{σ_1} by symmetry. In the following, for $f, g \in S$, we write
$\hat{f}_{jk}(\xi) = \varphi_k(2^{-j} \xi) \hat{f}(\xi)$, $\hat{g}_{jk}(\eta) = \chi_k(2^{-j} \eta) \hat{g}(\eta)$.
In this case, for $k = 1, 2$, we can write
\begin{equation}
T_{\sigma_k}(f, g)(x) = \sum_{j=0}^{\infty} m_j(x) f_{jk}(x) g_{jk}(x).
\end{equation}
Claim 1. T_{σ_2} is bounded from $L^p \times L^q$ into L^r.

\textbf{Proof.} By (2.9) and the Cauchy-Schwarz inequality, we can write
\[
|T_{\sigma_2}(f, g)| \leq \sum_{j=0}^{\infty} |m_j| |f_{j2}| |g_{j2}| \lesssim \left(\sum_{j=0}^{\infty} |f_{j2}|^2 \right)^{1/2} \left(\sum_{j=0}^{\infty} |g_{j2}|^2 \right)^{1/2};
\]
we used here the fact that the coefficients m_j are bounded, see Lemma 4. Using now H"older’s inequality, we have
\[
\|T_{\sigma_2}(f, g)\|_{L^r} \lesssim \left\| \left(\sum_{j=0}^{\infty} |f_{j2}|^2 \right)^{1/2} \right\|_{L^p} \left\| \left(\sum_{j=0}^{\infty} |g_{j2}|^2 \right)^{1/2} \right\|_{L^q}.
\]
Finally, the conditions on the supports of φ_2 and χ_2 allow us to make use of the Littlewood-Paley theory and conclude that
\[
\|T_{\sigma_2}(f, g)\|_{L^r} \lesssim \|f\|_{L^p} \|g\|_{L^q}.
\]
Obtaining the boundedness of the operator T_{σ_1} is a bit more delicate due to the support condition on χ_1, specifically having supp χ_1 contained in a disk rather than in an annulus. Nevertheless, we still claim the following.

Claim 2. T_{σ_1} is bounded from $L^p \times L^q$ into L^r.

\textbf{Proof.} Note first that we can still use the Littlewood-Paley theory on the f_{j1} part of the sum that defines $T_{\sigma_1}(f, g)(x) = \sum_{j=0}^{\infty} m_j(x) f_{j1}(x) g_{j1}(x)$. We have the following inequalities:
\[
\left\| \left(\sum_{j=0}^{\infty} |f_{j2}|^2 \right)^{1/2} \right\|_{L^p} \lesssim \|f\|_{L^p}
\]
At this point, however, we must proceed more cautiously. Observe that
\begin{equation}
\text{supp } \hat{f}_j g_j \subset \text{supp } \hat{f}_j + \text{supp } \hat{g}_j \subset \{2^{j-3} \leq |\xi| \leq 2^{j+3}\}.
\end{equation}
Denoting then \(h_{j1} := f_j g_j\), we now have
\begin{equation}
T_{\sigma_1}(f,g)(x) = \sum_{j=0}^{\infty} m_j h_{j1},
\end{equation}
where
\begin{equation}
\| \partial^\alpha m_j \|_{L^1} \lesssim 2^j |\alpha| \quad \text{and} \quad h_{j1} \text{ satisfies the support condition (2.10)}.\end{equation}
Assume for the moment that the following inequality holds:
\begin{equation}
\left(\sum_{j=0}^{\infty} |f_j|^2 \right)^{1/2} \lesssim \sup_{j \geq 0} |g_j| L^p \quad \text{and} \quad \|g\|_{L^q} \lesssim \|f\|_{L^p} \|g\|_{L^q}.
\end{equation}
The proof of Claim 2 assumed the estimate (2.11). Our next claim is that (2.11) is indeed true.

Claim 3. Assume that \(\|\partial^\alpha m_j\|_{L^\infty} \lesssim 2^j |\alpha|\) and \(\text{supp } \hat{h}_j \subset \{2^{j-3} \leq |\xi| \leq 2^{j+3}\}\). Then, for all \(r > 1\), we have
\begin{equation}
\left(\sum_{j=0}^{\infty} |f_j|^2 \right)^{1/2} \|f\|_{L^p} \lesssim \|g\|_{L^q}.
\end{equation}

In our proof of this claim, we will make use of Journé’s lemma [15, p. 69].

Lemma 5. There exists a constant \(C > 0\) such that, for all \(j \geq 0\), \(m_j = g_j + b_j\), where \(\|g_j\|_{L^\infty} \leq C\), \(\|b_j\|_{L^\infty} \leq C2^{(\delta - 1)j}\) and \(\text{supp } \hat{h}_j \subset \{2^{j/72} \leq |\xi| \leq 9 \cdot 2^{j}\}\).

Proof of Claim 3. First, we consider the case \(r = 2\). With the notation in Lemma 5, it suffices to estimate \(\| \sum_{j=0}^{\infty} b_j h_j \|_{L^2}\) and \(\| \sum_{j=0}^{\infty} b_j h_j \|_{L^2}^2\).
The estimate on the “bad part” follows from the triangle and Cauchy-Schwarz inequalities and the control $\|b_j\|_{L^\infty} \lesssim 2^{(\delta - 1)j}$; recall that $\delta < 1$:

$$\left\| \sum_{j=0}^\infty b_j h_j \right\|_{L^2} \leq \sum_{j=0}^\infty \|b_j\|_{L^\infty} \|h_j\|_{L^2} \leq \left(\sum_{j=0}^\infty \|b_j\|_{L^\infty}^2 \right)^{1/2} \left(\sum_{j=0}^\infty \|h_j\|_{L^2}^2 \right)^{1/2} \lesssim \left(\sum_{j=0}^\infty 2^{(2\delta - 2)j} \right)^{1/2} \left(\sum_{j=0}^\infty \|h_j\|_{L^2}^2 \right)^{1/2} \lesssim \left(\sum_{j=0}^\infty \|h_j\|_{L^2}^2 \right)^{1/2}.$$

Let us now look at the “good part”. We start by noticing that, given two summation indices $j, k \geq 0$, we have

$$\text{supp } \widehat{g_j} h_j \subset \{2^j/72 \leq |\xi| \leq 9 \cdot 2^j\},$$

$$\text{supp } \widehat{g_k} h_k \subset \{2^k/72 \leq |\xi| \leq 9 \cdot 2^k\}.$$

Thus, for $|j - k| \geq 11$, we have $\text{supp } \widehat{g_j} h_j \cap \text{supp } \widehat{g_k} h_k = \emptyset$. In view of this orthogonality, Plancherel’s theorem with the estimate $\|g_j\|_{L^\infty} \lesssim 1$ gives

$$\left\| \sum_{j=0}^\infty g_j h_j \right\|_{L^2} \leq \sum_{i=0}^{11} \left\| \sum_{k=i+11k} \widehat{g_i} h_{i+11k} \right\|_{L^2} \lesssim \left(\sum_{j=0}^\infty \|g_j h_j\|_{L^2}^2 \right)^{1/2} \lesssim \left(\sum_{j=0}^\infty \|h_j\|_{L^2}^2 \right)^{1/2}.$$

This completes the proof of the case $r = 2$. In the general case $r > 1$, we again seek the control of the “bad” and “good” parts. The estimate on the “bad” part follows virtually the same as in the case $r = 2$:

$$\left\| \sum_{j=0}^\infty b_j h_j \right\|_{L^r} \leq \left\| \left(\sum_{j=0}^\infty |b_j|^2 \right)^{1/2} \left(\sum_{j=0}^\infty |h_j|^2 \right)^{1/2} \right\|_{L^r} \lesssim \left\| \left(\sum_{j=0}^\infty |b_j|^2 \right)^{1/2} \right\|_{L^\infty} \left\| \left(\sum_{j=0}^\infty |h_j|^2 \right)^{1/2} \right\|_{L^r} \lesssim \left\| \left(\sum_{j=0}^\infty |h_j|^2 \right)^{1/2} \right\|_{L^r},$$

where we used Minkowski’s integral inequality in the last step.

For the “good part”, we can think of $g_k h_k$ as being dyadic blocks in the Littlewood-Paley decomposition of the sum $S_i := \sum_{k \equiv i \,(\text{mod} \,1)} g_k h_k$. Thus, it will be enough to control uniformly (in the L^r norm) the sums $S_i, 0 \leq i \leq 11$, in order to obtain the same bound on $\left\| \sum_{j \geq 0} g_j h_j \right\|_{L^r}$. The control on S_i however follows from the uniform estimate on the g_k’s and an immediate application of Littlewood-Paley theory.

Acknowledgments. Á. B.’s work is partially supported by a grant from the Simons Foundation (No. 246024). T. O. acknowledges support from an AMS-Simons Travel Grant.
REFERENCES

ÁRPÁD BÉNYI, DEPARTMENT OF MATHEMATICS, 516 HIGH ST, WESTERN WASHINGTON UNIVERSITY, BELLINGHAM, WA 98225, USA

E-mail address: arpad.benyi@wwu.edu

TADAHIRO OH, DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, FINE HALL, WASHINGTON RD, PRINCETON, NJ 08544-1000, USA

E-mail address: hirooh@math.princeton.edu