GIVE DETAILED EXPLANATIONS FOR YOUR ANSWERS.

On in class exams I assign four problems. Each is worth 25 points.

I try to assign problems from different topics that we covered.

Below are several problems to help you get used to my style of exam questions.

1. Let \(v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, v_4 = \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}, v_5 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \) be given vectors in \(\mathbb{R}^4 \).

(a) Row reduce the \(4 \times 5 \) matrix whose columns are the given vectors. Use the reduced row echelon form to answer the questions below.

(b) Are vectors \(v_1, v_2, v_3, v_4, v_5 \) linearly independent? Give justification for your answer based on the definition. Be specific!

(c) Find a basis for \(\text{span}\{v_1, v_2, v_3, v_4, v_5\} \). What is the dimension of this space? Do vectors \(v_1, v_2, v_3, v_4, v_5 \) span \(\mathbb{R}^4 \)? Again, be specific!

(d) What is the dimension of \(V = \text{span}\{v_1, v_2, v_3\} \)? What is the dimension of \(W = \text{span}\{v_4, v_5\} \)? Find a nonzero vector \(u \) which belongs to both subspaces \(V \) and \(W \). Be specific! Give \(u \) as a linear combination of \(v_1, v_2, v_3 \) and of \(v_4, v_5 \). A complete answer to (1b) can help here.

2. Let \(A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -3 & 5 \\ 1 & 0 & 7 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & -2 & -1 \\ -2 & -1 & 0 \\ -7 & 4 & 3 \end{bmatrix} \). Determine whether the matrices \(A \) and \(B \) have the same column space. (Important Note: If you claim that \(A \) and \(B \) have the same column space justify your claim by calculations. If you claim that the matrices do not have the same column space give a specific vector which is in one column space but not in the other.)

3. (a) Let \(v_1, \ldots, v_m \) be vectors in a vector space \(V \). State the definition of linear independence for the vectors \(v_1, \ldots, v_m \).

The rest of this problem is about the space \(\mathbb{P}_2 \) of all polynomials of degree at most 2.

(b) Consider the polynomials \(q_1(t) = t, q_2(t) = 1 - t^2, q_3(t) = 1 + t^2 \) in \(\mathbb{P}_2 \). Are these polynomials linearly independent in \(\mathbb{P}_2 \)? Why or why not?

(c) Let \(H \) be the set of all polynomials \(p \) in \(\mathbb{P}_2 \) such that \(p(-1) = p(1) \). Show that \(H \) is a subspace of \(\mathbb{P}_2 \).

(d) Find a basis for \(H \).

4. Suppose that \(A \) is \(12 \times 17 \) matrix and let \(S : \mathbb{R}^{17} \to \mathbb{R}^{12} \) be a linear transformation given by \(S(x) = Ax \).

Suppose that \(B \) is \(17 \times 12 \) matrix and let \(T : \mathbb{R}^{12} \to \mathbb{R}^{17} \) be a linear transformation given by \(T(x) = Bx \).

(a) Can \(S \) be one-to-one? Why or why not? Can \(S \) be onto? Why or why not? Is there a connection between \(S \) being one-to-one or onto and \(\text{Nul} \ A \)?
(b) Can T be one-to-one? Why or why not? Can T be onto? Why or why not? Is there a connection between T being one-to-one or onto and $\text{Nul } B$?

(c) If $b \in \mathbb{R}^{12}$ is such that $Ax = b$ has no solution, what can you conclude about the dimension of $\text{Nul } A$? (Give your answer in the form: $?? \leq \dim \text{Nul } A \leq ??$, where $??$ stand for a specific integer.)

(d) If $b \in \mathbb{R}^{17}$ is such that $Bx = b$ has no solution, what can you conclude about the dimension of $\text{Nul } B$? (Give your answer in the form: $?? \leq \dim \text{Nul } B \leq ??$, where $??$ stand for a specific integer.)

(e) Which of the matrices AB, BA is defined? Which of these matrices could be invertible? Which of these matrices is never invertible? Explain your answers.

5. In this problem we consider the vector space \mathbb{P}_2 of all polynomials of degree at most 2. Recall that the standard basis for \mathbb{P}_2 is $\mathcal{S} = \{1, t, t^2\}$.

(a) Consider the polynomials $q_1(t) = 1 - t^2, q_2(t) = t, q_3(t) = 1 + t^2$ in \mathbb{P}_2. Prove that $\mathcal{B} = \{q_1, q_2, q_3\}$ is a basis for \mathbb{P}_2.

(b) Find $P_{\mathcal{B} \leftarrow \mathcal{S}}$.

(c) Find the basis \mathcal{C} for \mathbb{P}_2 if $P_{\mathcal{C} \leftarrow \mathcal{B}} = A$, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$.

6. Consider the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix}$.

(a) Find all eigenvalues of A.

(b) For each eigenvalue find a corresponding eigenvector.

7. Consider the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ -1 & 0 & -1 \\ -4 & 4 & -5 \end{bmatrix}$. The eigenvalues of this matrix are -1 and -2. Find all eigenvectors corresponding to the eigenvalue -1.

8. Below I give two 3×5 matrices A and B together with their reduced row echelon forms:

\[
A = \begin{bmatrix} 1 & 2 & 1 & 3 & 4 \\ 1 & 2 & 2 & 4 & 5 \\ 2 & 4 & 1 & 5 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 2 & 3 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

\[
B = \begin{bmatrix} 4 & 3 & 1 & 2 & 1 \\ 5 & 4 & 2 & 2 & 1 \\ 7 & 5 & 1 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 2 & 1 \\ 0 & 1 & 3 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

Denote the columns of A by $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5$. Notice that the columns of the matrix B are the columns of the matrix A in reversed order. Therefore $\text{Col } A = \text{Col } B$.

(a) i. Which basis for $\text{Col } A$ is determined by the given RREF of A? Call this basis \mathcal{A}.

ii. Which basis for $\text{Col } B$ is determined by the given RREF of B? Call this basis \mathcal{B}.
(b) Based on the given RREFs for A and B find $P_{A \leftarrow B}$ and $P_{B \leftarrow A}$.

9. By $\mathbb{R}^{2 \times 2}$ we denote the vector space of all 2×2 matrices. Let A be a matrix in $\mathbb{R}^{2 \times 2}$. Decide which of the following are subspaces and justify your answer.

(a) $\mathcal{H} = \{ B \in \mathbb{R}^{2 \times 2} : AB = BA \}$
(b) $\mathcal{H} = \{ B \in \mathbb{R}^{2 \times 2} : BA = 0 \}$
(c) $\mathcal{H} = \{ B \in \mathbb{R}^{2 \times 2} : BB^\top = 0 \}$
(d) $\mathcal{H} = \{ B \in \mathbb{R}^{2 \times 2} : \det(B) = 0 \}$

10. Consider the following matrices

\[
A = \begin{bmatrix}
1 & 1 & 2 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
2 & 1 & 3
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
1 & 1 & 0 \\
2 & 2 & 1 \\
3 & 2 & 3 \\
4 & 3 & 6
\end{bmatrix}
\]

Determine all vectors which belong to both Col_A and Col_B.